Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 128(9): 3693-3702, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38476826

RESUMO

We present a theoretical model to compute the efficiency of the generation of two or more electron-hole pairs in a semiconductor by the absorption of one photon via the process of carrier multiplication (CM). The photogeneration quantum yield of electron-hole pairs is calculated from the number of possible CM decay pathways of the electron and the hole. We apply our model to investigate the underlying cause of the high efficiency of CM in bulk 2H-MoTe2, as compared to bulk PbS and PbSe. Electronic band structures were calculated with density functional theory, from which the number of possible CM decay pathways was calculated for all initial electron and hole states that can be produced at a given photon energy. The variation of the number of CM pathways with photon energy reflects the dependence of experimental CM quantum yields on the photon energy and material composition. We quantitatively reproduce experimental CM quantum yields for MoTe2, PbS, and PbSe from the calculated number of CM pathways and one adjustable fit parameter. This parameter is related to the ratio of Coulomb coupling matrix elements and the cooling rate of the electrons and holes. Large variations of this fit parameter result in small changes in the modeled quantum yield for MoTe2, which confirms that its high CM efficiency can be mainly attributed to its extraordinary large number of CM pathways. The methodology of this work can be applied to analyze or predict the CM efficiency of other materials.

2.
Chemistry ; 28(10): e202103523, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34939694

RESUMO

Stimuli-responsive soft materials enable controlled release of loaded drug molecules and biomolecules. Controlled release of potent chemotherapeutic or immunotherapeutic agents is crucial to reduce unwanted side effects. In an effort to develop controlled release strategies that can be triggered by using Cerenkov luminescence, we have developed polymer hydrogels that can release bovine serum albumin and immunoglobulin G by using light (254 nm-375 nm) as a trigger. We describe the synthesis and photochemical characterization of two light sensitive phenacyl bis-azide crosslinkers that are used to prepare transparent self-supporting hydrogel patches. One crosslinker was designed to optimize the overlap with the Cerenkov luminescence emission window, bearing an π-extended phenacyl core, resulting in a high quantum yield (14 %) of photocleavage when irradiated with 375 nm light. We used the extended phenacyl crosslinker for the preparation of protein-loaded dextran hydrogel patches, which showed efficient and selective dosed release of bovine serum albumin or immunoglobulin G after irradiation with 375 nm light. Cerenkov-triggered release is as yet inconclusive due to unexpected side-reactivity. Based on the high quantum yield, efficient release and large overlap with the Cerenkov window, we envision application of these photosensitive soft materials in radiation targeted drug release.


Assuntos
Dextranos , Hidrogéis , Dextranos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Hidrogéis/química , Polímeros/química , Soroalbumina Bovina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...